Es lebe die Geometrie!


Direkt zum Seiteninhalt

Hauptmenü


Umfang 2

Geometrie 2 > Drehpunktfunktion

Sinusfunktion und Umfangslänge
--> Erklärung zur Drehpunktfunktion (http://www.vivat-geo.de/Pdf-Dateien/Drehpunktfunktion.pdf)

WeiterPlayZurück

Drehpunktfunktion f(a) = sin(2a)

Die Drehpunktkurve ist eine Astroide mit der 1-Kurve als Spitzen-Evolvente.
Alle umschließenden Tangenten-n-Ecke der 1-Kurve mit den Innenwinkeln
(m teilerfremd zu n) haben die gleiche Umfangslänge, nämlich .




WeiterPlayZurück

Drehpunktfunktion f(a) = sin(2a)

Die blaue Drehpunktkurve ist eine Astroide mit der roten 0-Kurve als Bogenmitten-Evolvente
Alle umschließenden Tangenten-Pfeilecke der 0-Kurve mit dem Winkel zwischen
benachbarten Pfeilen (m teilerfremd zu n) haben den gleichen Umfang, nämlich Null. Dabei sind
die Pfeile stets in Richtung des Durchlaufs der 0-Kurve gerichtet. Zur Berechnung des Umfangs
wird das Tangenten-n-Eck rechts herum durchlaufen und die Seitenlänge beim Laufen in
Pfeilrichtung addiert und beim Laufen gegen die Pfeilrichtung subtrahiert.



WeiterPlayZurück

Drehpunktfunktion f(a) = sin(2a)
Alle umschließenden Tangenten-Pfeilecke der 0,4-Kurve mit dem Winkeln zwischen
benachbarten Pfeilen (m teilerfremd zu n) haben den gleichen Umfang, nämlich .




WeiterPlayZurück

Drehpunktfunktion f(a) = sin(3a)

Die blaue Drehpunktkurve ist eine Steiner-Zykloide (Deltoid) mit der roten 1-Kurve als Spitzen-
Evolvente. Diese ist eine Figur mit konstanter Breite (Steiner-Gleichdick). Alle umschließenden
Rechtecke sind Quadrate mit der Seitenlänge 2. Allgemein haben alle umschließenden
Tangenten-n-Ecke der 1-Kurve mit den Innenwinkeln (m teilerfremd zu n)
die gleiche Umfangslänge, nämlich , falls n > 3 ist.




WeiterPlayZurück

Drehpunktfunktion f(a) = sin(4a)
Alle Tangenten-Pfeilecke der s-Kurven (hier s = 1, s = 0,4 und s = 1,5) mit den Innenwinkeln
(m teilerfremd zu n) haben die gleiche Umfangslänge, nämlich , falls ist.

Home | Geometrie 1 | Geometrie 2 | Epizykeltheorie | Sitemap


Zurück zum Seiteninhalt | Zurück zum Hauptmenü